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SECTION 1 
I NTRODUCT I ON 

Future space missions a r e  an t ic ipa ted  t o  r e q u i r e  l a r g e  t r u s s  p la t fo rms and 
beams f o r  a number o f  s t r u c t u r a l  appl icat ions.  To cont ro l  these l a r g e  s t r u c -  
tu res  i n  space and understand the  dynamic i n t e r a c t i o n  between components, ana- 

l y t i c a l  models must be developed. Accurate a n a l y t i c a l  models, however, are 
d i f f i c u l t  t o  d e f i n e  and a r e  very resource i n t e n s i v e  f o r  the f o l l o w i n g  reasons: 

The l a r g e  phys ica l  s i z e  of the proposed p l a t f o r m  and beams 

The need f o r  d e t a i l  modeling o f  a l l  design features 

Var ia t ions  i n  m a t e r i a l  proper t ies 

Geometric v a r i a t i o n s  due t o  manufacturing to lerances 

The l a r g e  number of dynamic degrees o f  freedom 

A program i s  underway w i t h i n  NASA named Contro l  o f  F l e x i b l e  S t ruc tures  

(COFS) t o  develop methods t o  character ize l a r g e  space s t r u c t u r e s  and overcome 
some o f  these d i f f i c u l t i e s .  To gain some i n i t i a l  i n s i g h t ,  i t  i s  des i rab le  t o  
perform a ground t e s t  program on a f l i g h t - q u a l i t y  dep loyab le / re t rac tab le  t r u s s  
beam. Since t h e  o b j e c t i v e  i s  t o  character ize a space f l i g h t  beam, w i t h  
response and s t r u c t u r a l  performance c h a r a c t e r i s t i c  o f  bas ic  l a r g e  space 
s t ruc tu res ,  a t r u s s  beam model was designed and f a b r i c a t e d  t o  the  h igh  stan- 
dards t y p i c a l  o f  f l i g h t  hardware; however, formal qual i t y  assurance and 
accountabi 1 i t y  procedures normal ly used f o r  f l  i g h t  hardware were no t  required. 

The beam concept, an A r t i c u l a t i n g  Astromast, shown i n  F igure 1, i s  an 
improvement o f  a s t r u c t u r a l  concept t h a t  was invented 20 years ago. An engi-  

neer ing model o f  t h i s  s t ructure,  fabr ica ted  from s t a i n l e s s  s tee l  tub ing  and 
us ing w i r e  cable diagonals and a c y l i n d r i c a l  deployment can is te r ,  was manufac- 

- tu red  i n  1972 as p a r t  o f  the pre l im inary  development o f  NASA's e a r l y  Space 
S t a t i o n  studies.  Since t h a t  t ime, the design has been s i g n i f i c a n t l y  improved. 
Graphi te lepoxy tub ing  now replaces both the s t a i n l e s s  s tee l  tub ing and the 
w i r e  cables o f  the o r i g i n a l  design. Single-degree-of-freedom hinges and a 
unique f o l d i n g  geometry have el iminated swivel j o i n t s  a t  the  end o f  each bay. 

1 
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A new hinge design which a l lows r e l i a b l e  r e t r a c t i o n  i s  used i n  t h e  midspan o f  
f o l d i n g  tubu la r  diagonals ins tead o f  the  la tches  o r i g i n a l l y  used t o  tens ion  
cable diagonals. Th i s  change i n  diagonal design, which a l lows f o r  diagonals 
o f  l a r g e r  cross sect ion,  s i g n i f i c a n t l y  increases beam t o r s i o n a l  s t i f f n e s s  and 

strength. 

Th is  repo r t ,  i n  var ious  sections, reviews the  design requirements f o r  the  
t r u s s  beam model, describes the concept behind the  beam, and inc ludes p e r t i -  
nent analyses and s tud ies  concerning beam d e f i n i t i o n ,  deployment loading,  
j o i n t  compliance, e tc .  Design, f a b r i c a t i o n  and assembly procedures are  
discussed. 

3 
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2.1 OVERALL TECHNICAL REC 

SECTION 2 
DES I GN REQUIREMENTS 

I REMENTS 

The o v e r a l l  design requirements o f  the dep loyab le / re t rac tab le  t r u s s  beam 

model a r e  (Reference 1): 

1. 

2. 

3. 

4. 

5. 

6 .  

7. 

8 .  

9. 

10. 

High s t r u c t u r a l  e f f i c i e n c y  when evaluated on the bas is  o f  both 
s t rength  and s t i f f n e s s ;  

S i m p l i c i t y  o f  design and operat ion which s h a l l  i n c l u d e  sequent ia l  
deployment and r e t r a c t i o n ;  

High operat ional  r e l i a b i l i t y  over many deployment l re t ract ion 
cycles;  

Design features which f a c i l i t a t e  a n a l y t i c a l  modeling and ease o f  
p r e d i c t i n g  s t r u c t u r a l  behavior; 

Minimum f r e e  play;  

Design fea tures  which ensure l i n e a r  response t o  bending, a x i a l ,  
and t o r s i o n a l  loads; 

Representat ive o f  a gener ic s t r u c t u r e  so t h a t  the t e s t  r e s u l t s  w i l l  
p rov ide a bas is  f o r  app l i ca t ion  t o  o ther  beams o f  l i k e  conf igura t ion ;  

No aspects o f  design o r  f a b r i c a t i o n  which r e s t r i c t  i t s  s i z e  
c a p a b i l i t y ;  

No inherent  o r  design features t h a t  would d i s q u a l i f y  i t  f o r  space 
app l ica t ions ;  and 

E a s i l y  repai rab le,  w i t h  a high comnonality o f  p a r t s  throughout. 

The beam w i l l  be used as a ground t e s t  a r t i c l e  f o r  the development o f  

research techniques i n  s t r u c t u r a l  and dynamic charac ter iza t ion  o f  l a r g e  space 
s t ructures.  However, i t  s h a l l  e x h i b i t  the design, manufactur ing to lerances 
and h i g h  performance standards t y p i c a l l y  found i n  a f l  i g h t - r a t e d  s t ructure.  
I t  s h a l l  be capable o f  remotely ac t i va ted  deployment and r e t r a c t i o n ,  w i t h  an 
e l e c t r i c a l  harness and t e s t  components d i s t r i b u t e d  along i t s  leng th  and a mass 

at tached t o  the  t i p .  The deployer, e l e c t r i c a l  harness, t e s t  components and 

4 
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t i p  mass a re  no t  suppl ied under t h i s  contract .  The beam i s  t o  be deployed and 
r e t r a c t e d  manually. The s a l i e n t  fea tures  and opera t ion  o f  a p o t e n t i a l  
deployer s h a l l  be de f ined and be compatible i n  every respect w i t h  the  beam. 

2.2 TRUSS BEAM MODEL DESIGN REQUIREMENTS 

The beam d e l i v e r e d  under t h i s  contract  incorporates t h e  f o l l o w i n g  d e t a i l e d  

aspects (Reference 1): 

1. The load path through a l l  j o i n t s  and members i n  the  deployed beam i s  
s t a t i c a l l y  determinate. 

2. The beam has th ree  p a r a l l e l  load-carrying members c a l l e d  longerons t h a t  
a re  p a r a l l e l  t o  the  beam centra l  axis. The -longerons form the apexes 
o f  an e q u i l a t e r a l  t r i a n g l e  when viewed as a cross sec t i on  o f  the beam. 

3. J o i n t s  a re  employed a t  loca t ions  as requ i red  t o  deploy and r e t r a c t  t he  
beam. The number of j o i n t s  i s  kept  t o  a minimum and a l l  those used i n  
t h e  d e l i v e r a b l e  beam are  compatible w i t h  automatic deployment and 
r e t r a c t i o n  . 

4. The longerons o f  t he  deployed beam have t h e i r  centers  on the  c i rcumfer-  
ence o f  a c i r c l e  1.4 meters i n  diameter. 

5. The deployed beam has a length o f  approximately 20 meters. 

6. The deployed beam has a minimum design bending s t i f f n e s s  ( E I )  o f  1.15 x 
lo7 N-m2, based on pub1 ished p roper t i es  o f  a v a i l a b l e  o r  near-term 
mater ia ls ,  and on da ta  obtained from t e s t s  on sample mater ia ls .  The 
de l i ve red  beam has a minimum bending s t i f f n e s s  o f  0.9 x lo7 N-m2 when 
evaluated by t e s t  o f  a section 14 meters o r  longer  i n  length. 

7. The deployed beam has a design to rs iona l  s t i f f n e s s  equal t o  o r  g rea te r  
than t h a t  requ i red  f o r  t he  f i r s t  t o r s i o n a l  v i b r a t i o n  frequency t o  be 
g rea te r  than fou r  times the f i r s t  bending frequency, both o f  which 
based on the  beam t o  be a cant i lever .  

8. The deployed beam has adequate bendfng s t reng th  t o  r e s i s t  f a i l u r e  when 
a 20-meter-long sec t ion  mounted as c a n t i l e v e r  w i t h  a t i p  mass o f  35 
ki lograms i s  subjected t o  a r o t a t i o n a l  acce le ra t i on  o f  0.15 rad/secz 
about a l a t e r a l  ax i s ,  a t  the  root. 

2.3 DEPLOYMENT/RETRACTION CONCEPT 

The t r u s s  beam model stows e f f i c i e n t l y  w i t h  a l t e r n a t i n g  clockwise and 
counter-clockwise f o l d i n g  o f  t he  longerons toward the  packaged stack. As 
shown i n  F igure  1, the  diagonals must be fo lded i n  midspan t o  a l l o w  packaging. 
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The r e s u l t i n g  design has only  36 hinge p i n s  f o r  18 bays along each 20-meter- 
long longeron assembly. The bas ic  packaging o f  the  t r u s s  beam model reduces 
the l e n g t h  t o  2.75 percent of i t s  deployed value. 

The beam deploys i n  an equal ly  simple manner by r o t a t i n g  the  longerons 
approximately 90 degrees t o  t h e i r  u p r i g h t  pos i t ion .  As t h i s  i s  done, the 
diagonals u n f o l d  and are  r i g i d i z e d  by spring-loaded hinges a t  t h e i r  midspan. 

There i s  no n e t  r o t a t i o n  dur ing e i t h e r  the deployment or r e t r a c t i o n  o f  the 
beam because o f  the  a l t e r n a t i n g  d i r e c t i o n  o f  the  diagonals. A l l  hinges have a 
s i n g l e  degree o f  freedom and have been designed f o r  low compliance and minimum 
reduc t ion  i n  beam s t i f fness .  The single-degree-of-freedom hinge l i n e s  a l s o  
prov ide  c o n t r o l  over the  k inematics o f  the s t r u c t u r e  dur ing  t r a n s i t i o n  between 
the stowed and deployed conf igurat ions.  

A deployment / re t ract lon mechanism f o r  the beam would use three synchro- 
n ized leadscrews which engage threaded open-nut f i t t i n g s  a t  the longeron c lus-  
t e r  h inge assemblies. The deployer i t s e l f  i s  stowed and deployed us ing the 
same leadscrew mechanism t o  minimize t h e  he igh t  o f  the  package. Bays can be 
deployed one a t  a t ime w i t h  the assistance o f  a torque motor f o r  stack ro ta -  
t i o n  o r  two bays a t  a t ime w i t h  no necess i ty  f o r  stack ro ta t ion .  Deployment 
and r e t r a c t i o n  can be continuous. 
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SECTION 3 
BEAM DEVELOPMENT AND ANALYSIS 

Truss beam design i s  a process which invo lves the i n t e r a c t i o n  o f  many 
fac to rs .  Bending s t i f f n e s s  and strength, as w e l l  as t o r s i o n a l  s t i f f n e s s  and 
s t rength,  a r e  determined by member cross sect ions,  m a t e r i a l  moduli  and j o i n t  
compliance. Member diameter and hinge placement a re  in f luenced by packaging 
requirements. Single-degree-of-freedon hinges, i n  general,  produce s t r a i n s  
dur ing  deployment o f  mul t i -h inged s t ructures,  and t h i s  e f f e c t  must be quant i -  
f i e d  and accounted f o r  i n  terms o f  deployment load and member size. 

3.1 BEAM STRUCTURE AND PERFORMANCE 

Figure  2 shows a gener ic representat ion o f  the t r u s s  beam. The s p e c i f i c s  

o f  deployment k inemat ics do n o t  a f f e c t  t h i s  analysis.  The beam i s  o f  t r iangu-  
l a r  cross-sect ion and cons is ts  o f  three member types: longerons which are  
p a r a l l e l  t o  the  beam a x i s  and provide beam s t i f f n e s s  and s t rength  i n  bending, 
bat tens which are  perpendicular t o  the beam a x i s  and prov ide beam s t a b i l i t y ,  
and diagonals which a r e  i n  the  beam face planes and prov ide beam s t i f f n e s s  and 
s t rength  i n  t o r s i o n  and shear. 

3.1.1 Longeron Design 

3.1.1.1 STIFFNESS 

The requ i red  minimum bending s t i f f n e s s  i s  

E1 = 1.15 x 10' Nm2 

and i n  terms of longeron s t i f f n e s s  m, and beam rad ius  R, 

E 1  = 3/2 R2 
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where ma i s  the e f f e c t i v e  longeron s t i f f n e s s  i n c l u d i n g  j o i n t  compl lance 

e f f e c t s :  

1 
+ - ,  - = -  - EAa EAa a 

where EAa i s  the ac tua l  longeron s t i f f n e s s ,  ca i s  the  sum o f  the j o i n t  compli- 
ances on the two ends o f  the  longeron, and 2 i s  the longeron length (bay 

length).  I n  t e s t s  o f  representat ive j o i n t  bodies and longeron end f i t t i n g s  
(see Sect ion 3.4.2), a value o f  compliance was obtained, per  hinge p in ,  o f  0.5 
micro inch per  pound. Then, assuming a t o t a l  j o i n t  compliance o f  5.7 nm/N (1.0 
microinch/pound), a beam radius o f  R = 0.7 meter, and a bay length  o f  1.12 
meters, the  e f f e c t i v e  longeron s t i f f n e s s  i s  

- 
EAa = 15.6 X lo6 N (3.5 x lo6 l b f )  

and the  requi red longeron s t i f f n e s s  i s  

EAa = 17.0 x lo6 N (3.8 x lo6 l b f )  

The modulus o f  the se lected graphite/epoxy f o r  t h i s  a p p l i c a t i o n  i s  

E = 1.17 x 10l1 N/m (17 x lo6 p s i )  

so t h a t  the longeron area i s  
-4 .2 Aa = 1.46 x 10 (0.226 i n2)  

This  i s  s a t i s f i e d  by the f o l l o w i n g  cross sec t ion  dimensions: 

ODa = 0.02019 m (0.795 i n )  

I D a  = 0.01491 m (0.587 i n )  

3.1.1.2 STRENGTH 

Beam bending s t rength  i s  determined by longeron Euler  buck l ing  strength.  
The longeron j u s t  s p e c i f i e d  has an areal moment o f  

9 
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IP = (aI64) (ODP 4 - ID:) = 5.73 x 10 -9 .4 

so t h a t  i t s  bending s t i f f n e s s  i s  

E I P  = 671 Nm2 

and i t s  Eu le r  buck l ing  load i s  
2 2 'Eup = H E I P / P  

= 5,275 N (1,172 l b f )  

Th is  fo rce ,  a c t i n g  across the  a l t i t u d e  o f  the  t r i a n g l e  d e f i n i n g  the  beam cross 
sect ion,  determines the  beam bending s t rength  Mb: 

Mb = 3/2 R PEu 
a 

= 5,540 N-m 

The requirement t h a t  t he  20-meter beam w i t h  a 35-kilogram t i p  mass wi thstand a 
r o t a t i o n a l  acce le ra t i on  a t  t he  r o o t  o f  a = 0.15 rad/sec2 corresponds t o  a 
bending s t reng th  requirement o f  

Mb = Jra 
r 

where J, i s  t he  beam r o t a t i o n a l  i n e r t i a  about i t s  r o o t  as fo l lows:  

Jr = m t i p  L2 + 1/3 m t  L3 

= (35 kg)(20 m)' + (1/3)(3.7 kg/m)(20 m)3 

= 24,000 kg m2 

then the  requ i red  beam bending strength i s  

Mb = 3,580 N-m 
r 

10 
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Therefore a bending s t rength  margin i s  expected o f  

Mar = (Mb - Mb)/Mb 
r 

= 0.55 

3.1.2 Diagonal Design 

3.1.2.1 STIFFNESS 

Diagonal s t i f fness  i s  determined by the  requirement t h a t  the  t o r s i o n a l  
frequency be f o u r  t imes the  bending frequency, bo th  i n  cant i lever .  Torsional  

frequency i s  g iven by beam tors iona l  s t i f f n e s s  GK, a x i a l  mass moment o f  i n e r -  
t i a  Ja, and length  L: 

f t o r s  = 0.25 fq (Reference 2, Table 36, case 8b) 

Bending frequency i s  g iven by beam bending s t i f f n e s s  E I ,  l i n e a l  mass m ' ,  and 
length  L: 

fbend 0.56 4- (Reference 2,  Table 36, case 38) 

Then, s ince ftors/fbend 4 ,  

Ja - 79 - GK 
E 1  mi L3  
- -  

Beam a x i a l  mass moment o f  i n e r t l a  Ja may be obtained by assuming a mass d i s -  
t r i b u t i o n  r e l a t i v e  t o  the beam axis. A l a r g e  share o f  the mass, i n c l u d i n g  
longeron members and corner bodies, i s  along the longeron l i n e ,  a t  R = 0.7 
me te r .  Diagonals and battens are  along the t r i a n g l e  side, between R = 0.35 
meter and R = 0.7 meter; diagonal hinges a r e  a t  R = 0.35 meter. An assumed 

rad ius  o f  g y r a t i o n  o f  R = 0.6 meter then y i e l d s  a r o t a t i o n a l  i n e r t i a  o f  
9 

Ja = m'LR 
9 

= 0.36 m'L 
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The ac tua l  value o f  beam l i n e a l  mass m'  does no t  a f f e c t  the s o l u t i o n  because 
i t  cancels o u t  o f  the equation. Since beam length  i s  L = 20 meters, the 
requi red r a t i o  o f  t o r s i o n a l  and bending s t i f f n e s s e s  i s  

2 

- GK = 7 9 0 )  
E 1  

= 0.071 

Both t o r s i o n a l  and bending s t i f f n e s s  can be expressed i n  terms o f  diagonal and 
longeron s t i f f n e s s ,  so t h a t  

(3 /4)  R2 s i n  8 coszS md GK 
- t  

E 1  (3/2) R 2  mg 

which, f o r  8 = 42.7 degrees, i s  

GK 
E 1  
- 0.183 

Therefore, t h e  e f f e c t i v e  diagonal s t i f f n e s s  must be 

= 6.06 x lo6 N (1.35 x lo6 l b f )  

- 
EAd i s  the e f f e c t i v e  diagonal s t i f f n e s s  i n c l u d i n g  j o i n t  compliance e f f e c t s :  

'd + - ,  1 1 - = -  - 
EAd EAd d 

where EAd i s  the ac tua l  diagonal s t i f f n e s s ,  Cd i s  the sum o f  the j o i n t  

compliances along the diagonal, and d i s  diagonal length. Several elements 
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along the  diagonal con t r i bu te  t o  i t s  compliance: the  end hinges are  no t  nor- 

mal t o  the  center l ine ,  so t h a t  ax ia l  s t r u t  load ing  produces compliance due t o  
bending of the  f i t t i n g  and motion along the  p i n  ax is ,  i n  a d d i t i o n  t o  p in -ho le  

deformation; the  mid-span hinge i s  subject  t o  hinge opening, i n  a d d i t i o n  t o  
bending and p in -ho le  deformation. Total compliance is unknown, b u t  i s  assumed 

t o  be l e s s  than 100 nm/N. Assuming a t o t a l  j o i n t  compliance o f  95 nm/N (16.6 

microinch/pound) and a diagonal length o f  d = 1.58 meter, t he  requ i red  diago- 

nal s t i f f n e s s  i s  

(2.1 x l o 6  l b f )  

The modulus o f  the se lected graphite/epoxy f o r  t h i s  a p p l i c a t i o n  i s  

E = 1.17 x l o l l  N/m2 (17 x l o 6  p s i )  

so t h a t  t h e  diagonal area i s  

Th is  i s  s a t i s f i e d  by the  f o l l o w i n g  cross sec t i on  dimensions: 

3.1.2.2 STRENGTH 

(0.595 i n )  

(0.439 i n )  

I 
I 
I 
I 

Beam t o r s i o n a l  s t rength  i s  determined by diagonal Euler  buck l ing  s t rength,  
and the re fo re  a f fec ts  diagonal s iz ing;  however, no requirement was placed on 
beam t o r s i o n a l  strength. Beam tors iona l  s t rength  i s  g iven by 

Mt = 3 P COS B R/2 
Eud 

Diagonal Eu le r  buck l ing  s t rength  i s  

13 
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'Eud = lI2 EId/d2 

= 833 N (185 l b f )  

so t h a t  beam t o r s i o n a l  s t rength  i s ,  f o r  reference, 

(5,700 i n - l b f )  Mt = 642 N-m 

3.2 HINGE SPECIFICATION 

The at ta inment  o f  low hinge t t i n g  comp ince requi  res  t h a t  s I , igl  e- 
degree-of-freedom hinges are  used f o r  packaging. F igure 3 shows the t r u s s  
beam w i t h  two bays i n  a p a r t i a l l y  deployed s ta te ,  and several bays completely 
packaged. Longerons a re  hinged only a t  t h e i r  ends; diagonals a re  hinged a t  
t h e i r  ends and near t h e i r  centers; ba t tens  a re  r i g i d l y  a t tached t o  nodal 
bodies. I n  es tab l i sh ing  the  hinge design, t he  f o l l o w i n g  cons t ra in t s  and/or 
ground r u l e s  a re  adhered to. 

1. Each bay i s  t he  m i r r o r  image o f  i t s  ad jacent  bay, so t h a t  on l y  one 
bas ic  type o f  each hinge f i t t i n g  need be designed. 

2. The longeron h inge-center l ine angle i s  the  same on both ends. 

3. The diagonal mid-span hinge, when packaged, i s  i n  the  ba t ten  plane. 
Th is  i s  an a r b i t r a r y  decision, based on p r a c t i c a l  and a n a l y t i c a l  
experience, made i n  order  t o  minimize deployment s t r a i n  and package 
height .  

4. The diagonal mid-span hinge, when deployed, i s  i n  the  face plane. Th is  
i s  an a r b i t r a r y  dec is ion,  based on p r a c t i c a l  and a n a l y t i c a l  experience, 
made i n  order  t o  minimize deployment s t ra in .  

5. A l l  deployed cen te r l i nes  converge a t  nodal po ints .  

6. A l l  hinges, except f o r  t h e  diagonal mid-span hinge, i n t e r s e c t  and cen- 
t e r  on associated deployed center l ines.  

S p e c i f i c a t i o n  o f  t r u s s  beam hinges requ i res  the  d e f i n i t i o n  o f  two geomet- 
r i c  c h a r a c t e r i s t i c s  f o r  each hinge: a p o s i t i o n  and an angular  o r i en ta t i on .  
The p o s i t i o n  i s  un iquely  determined by beam concept and packaging 
requirements; angular o r i e n t a t i o n  i s  governed on ly  by the  requirement t h a t  

members be unst ra ined i n  packaged and deployed conf igura t ions ,  and the re fo re  
i s  v a r i a b l e  f o r  design. I n  Figure 4 ,  a bay o f  the  t r u s s  beam i s  shown i n  

14 
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a) Packaged 

Figure 4. Longeron packaging geometry. 
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packaged and deployed COnfiguratiOnS. I n  F igure 4(a), a Car tes ian coordinate 
system i s  establ ished, w i t h  the  o r i g i n  a t  one corner o f  the  base ba t ten  plane, 
the x-axis along one bat ten,  y i n  t h e  ba t ten  plane and perpendicu lar  t o  x, and 
z along the  longeron. Po in t  coordinates a r e  s p e c i f i e d  by a number t r i p l e t  
x,y,z; h inge o r i e n t a t i o n s  a r e  ind icated by a t r i p l e t  u,v,w, which g ives  the 
x,y,z components o f  a u n i t  vector ,  or d i r e c t i o n  cosines. 

3.2.1 Hinge Pos i t ions  

The longeron i s  hinged i d e n t i c a l l y  a t  i t s  two ends, a t  a v e r t i c a l  o f f s e t  
d is tance t, above o r  below the adjacent ba t ten  plane. The hinge passes 
through and i s  centered on the deployed longeron c e n t e r l i n e ,  so i t s  center 

p o s i t i o n  i s  

x, = 0 

Y, = 0 

2,  = tll 

o r  

Packaged beam geometry i s  thus speci f ied:  the packaging angle Q i s  
obtained from the  bay l e n g t h  a ,  the beam rad ius  R, and longeron o f f s e t  t,, 
assuming the  packaged longeron t o  be hor izonta l .  

,/2-t, 
cos Q = 

R 

Diagonal end hinges pass through and are  centered on the deployed diagonal 
cen ter l ine .  The base diagonal, which when deployed l i e s  i n  the x-z plane an 

angle B away from the  ba t ten  d i rec t ion ,  as shown i n  F igure 5, i s  hinged a t  a 
v e r t i c a l  o f f s e t  d is tance t d  above the ba t ten  plane. Then the diagonal end 
hinge center  p o s i t i o n  i s  

pd = [ t d / t a n  0 ,  0, t d ]  

17 
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Fire 5. Diagonal packaging geometry. 

+ d, sin p 
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The diagonal midspan hinge loca t ion  i s  a design var iab le.  To keep deploy- 
ment s t r a i n  low, the  design approach adopted was t o  package the diagonal 
midspan hinge on the  fa r  s ide  o f  beam center. With t h i s  p o s i t i o n  determined, 
beam hinge p o s i t i o n s  are  spec i f ied  i n  t h e i r  e n t i r e t y .  

3.2.2 Hinge Orientations i 

Single-degree-of-freedom hinge a x i s  o r i e n t a t i o n s  are  determined by the 
change i n  o r i e n t a t i o n  o f  two reference u n i t  vectors  associated w i t h  the  r o t a t -  
i n g  member. One vector,  e,, may be the center l ine ,  and another vector ,  e2, 
may be another hinge l i n e ,  such as the diagonal mid-span hinge, o r  a reference 
d i r e c t i o n .  Then the requi red hinge i s  the cross product o f  the vec tor  d i f f e r -  
ences between packaged and deployed conf igurat ions.  

The primed and unprimed vectors  denote deployed and packaged or ien ta t ions .  

3.2.2.1 LONGERON HINGE ORIENTATION 

F igure 6 shows longeron vector o r ien ta t ions .  The deployed longeron 
c e n t e r l i n e  i s  po in ted  upward, along the z-axis. Then 

$1' = [O,O,l] 

The packaged longeron c e n t e r l i n e  i s  i n  the x-y plane, a t  an angle o f  Q p l u s  30 
degrees w i t h  respect t o  the x-axis; Q is the packaging angle def ined i n  
Sect ion 3.2.1. Then 

2, = [cos (Q+30), s i n  (Q+30), 01 

The o ther  vec tor  chosen f o r  t h e  longeron p o i n t s  r a d i a l l y  inward when deployed, 
and packages i n  the  x-y plane, perpendicular t o  the  longeron l i n e ,  inward. 
Then 

$ 2 '  = [cos (30), s i n  (30), 01 
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(P+30° 

b) Deployed vector orientation 
A 

--- 

a) Packaged vector orientation 

Figure 6. Longeron hinge specification. 
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-b - - 

and 

A A A 

i j k 
-COS (@+30) - s i n  (@+30) 1 

cos (30) - s i n  (@+30) s i n  (30) + cos (@+30) 0 

t2  = [ s i n  (@+30), -cos (@t30),  01 

The hinge l i n e  i s  

which reduces t o  the column vec tor  

1 + - s i n  (30) - cos (@+30) 

He = [ -cos(@+30) {s in(30)  + cos(4t30)) + sin($+30) icos(30) - sin(@+30)) 
COS (30) - COS (@+30) 

3.2.2.2 DIAGONAL HINGE ORIENTATIONS 

The diagonal does n o t  package symmetrical ly; therefore,  the hinge axes on 
the ends a r e  n o t  s im i la r .  Each end i s  considered separately. F igure 7 shows 
one end o f  the diagonal, described geometr ica l ly  i n  Sect ion 3.2.1. The vec- 
t o r s  6, and t2 ,  d e f i n i n g  the center l ine o f  the  member and midspan hinge axes, 
a r e  given, packaged and deployed, as 

6, = [cos Y,,  s i n  Y,, 01 

6 , '  = [cos 0 ,  0, s i n  01 

8, = [-cos Y 2 ,  s i n  Y 2 ,  01 

6 2 '  = [-cos YJ, 0, SinyJ] 

I n  these equations, i t  is i m p l i c i t l y  assumed t h a t  

the member c e n t e r l i n e  l i e s  i n  the  ba t ten  (xy) plane when packaged; 

the member c e n t e r l i n e  l ies  i n  the  longeron-batten (xz) plane when 
dep 1 oyed ; 
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a) Packaged vector orientation 

Figure 7. Diagonal hinge specification. 
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the midspan hinge a x i s  l i e s  i n  the  ba t ten  plane when packaged, and 

the midspan hinge a x i s  l i e s  i n  the  longeron-batten plane when deployed. 

O f  these assumptions, o n l y  the second i s  requi red by beam geometry. The 
t h i r d  and f o u r t h  a r e  poss ib le  and are advantageous I n  terms o f  diagonal s t r a i n  
dur ing  deployment. Experience gained from prototype model eva lua t ion  and from 
general analyses conducted Independently and dur ing  t h e  COFS program have 
shown t h i s  diagonal mid-span hinge conf igura t ion  t o  r e s u l t  i n  r e l a t i v e l y  lower 

diagonal s t r a l n  In the  t r u s s  beam. The f i r s t  assumption i s  n o t  s t r i c t l y  t r u e  
and leads t o  a s l i g h t  e r r o r  i n  hinge o r i e n t a t i o n  spec i f i ca t ion .  The end hinge 
i s  

-* 

The hinge on the  o ther  end o f  the diagonal, Hd,, i s  determined by invers ion  o f  
the s i n g l e  bay, fo l lowed by analys ls  s i m i l a r  t o  t h a t  above. The angles y, y 2 ,  

-b 

and y, are  d i f f e r e n t  from, b u t  consistent w i th ,  those f o r  Hd 
1 

3.2.3 P o i n t  Design 

3.2.3.1 LONGERON HINGE 

The longeron hinge a x i s  in te rsec ts  and centers on the deployed longeron 
center l ine .  It i s  located on the  z-axis, 0.01905 meter (0.75 inch) above the 
ba t ten  plane. Since the  bay length I s  E = 1.12 meters, the  packaging angle 

i s ,  f rom Sect ion 3.2.1, 

/1.12/2 - 0.01905 1 
@ = cos-' \ O o 7  1 = 39-395 deg 

Table 1 shows the longeron or len ta t ion ,  as determined us ing the equation 

Sect ion 3.2.2.1. 
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TABLE 1: GROUND BEAM GEOMETRY 

D I M E N S I O N S  (mm) : R A D I U S  BAY LENGTH PACKAGED BAY 
700 1 120. (:)00 38.100 

ANGLES ( D e g  ) : 

OFFSETS (mm) : 

PROPERT I ES: 
LONGERON 
D I AGONAL 

P O S I T I O N  (mm) 

LONGERON: 
0.00000 
(3.00000 
19.0S000 

DIAGONAL 1: 
20.62223 
0.00000 
19.05000 

DIAGONAL 2: 
20.62223 
0.00000 
19. 05000 

D I A G  C L  - BATTEN D I A G  H I N G E  

48.58729 42.73053 90 0 
PKG DPL PKG DPL 

LONG D I A G  D I A G  M I D  
19.090 19.050 8.467 

E (N/m*2) 
l.l7E+ll 
1.17E+11 

G (N/m*2) 
4. E+9 
4. E+9 

I D  (mm) 

AREA (mm"2) 
VECTOR OD (mm) E A  ( 10A6 N) E1 (Nm*2) GJ  (Nm"2) LENGTH ( m m )  

,91645 14.91000 
.0753 1 20. 19000 1 7.03008 670.500 1 S 4s. 846 1 6 1 08 1 .90(:)(:)(:) 
-39301 145.55627 

.99739 1 1.15000 

.OS102 15.11000 9.55577 210.60593 14.40041 768.82977 -. 05102 81.67324 

.94867 11.15000 

.22364 8 1.67324 
-. 22364 15.11000 9.55577 210.60593 14.40041 825.68687 
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3.2.3.2 DIAGONAL HINGES 

The diagonal end hinge axes i n t e r s e c t  and center  on the  deployed diagonal 
c e n t e r l i n e ,  a t  a d is tance o f  t d  = 0.01905 meter (0.75 inch)  above the  ba t ten  
plane. The deployed c e n t e r l i n e  i s  d i r e c t e d  by the vector  (cos B ,  0, s i n  e ) ,  
where 

B = tan-(&) = 42.7305 deg 

End hinge a x i s  o r i e n t a t i o n s  are  determined by the var ious angles i n  Sect ion 

3.2.2.2. 

3.2.3.2.1 Diagonal 1 

R e f e r r i n g  t o  F igure 7, the  angles f o r  the  p o i n t  design are, f o r  diago- 

na l  1, 

y1 = 48.58692 degrees 

y2 = 34.41193 degrees 

y3 = 40.26832 degrees 

The o r i e n t a t i o n  f o r  diagonal 1, given i n  Table 1, i s  the s o l u t i o n  o f  the equa- 
t i o n s  o f  Sect ion 3.2.2.2, using the  above angles. 

3.2.3.2.2 Diagonal 2 

The angles f o r  the p o i n t  design'are,  f o r  diagonal 2,  

Y 1  = 16.20152 degrees 

y2 = 66.79732 degrees 

y, = 40.26832 degrees 

The o r i e n t a t i o n  f o r  diagonal 2 ,  given I n  Table 1, Is the s o l u t i o n  o f  the  equa- 
t i o n s  o f  Sect ion 3.2.2.2, using the above angles. 
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3.3 DEPLOYMENT ANALYSIS 

S t r a i n i n g  occurs i n  general cJr ing deployment o f  a mu1 t i - h i n g e d  s t r u c t u r e  
which i s  unst ra ined a t  the extremes o f  f u l l  deployment and f u l l  packaging. 
The s t r a i n i n g  i s  the r e s u l t  of the  i n a b i l i t y  o f  a s e t  o f  r i g i d  body r o t a t i o n s  
o f  component s t r u t s  t o  simultaneously s a t i s f y  t h e  angular requi  rements o f  a1 1 

hinges. I n  e f f e c t ,  a hinge o r i e n t a t i o n  may be d i f f e r e n t  as de f ined by a s t r u t  
end and by the  f e a t u r e  t o  which the s t r u t  i s  attached. Therefore, t o  accomno- 
date misal ignment dur ing  deployment, a s t r u t  must be t w i s t e d  and bent, which 
in t roduces i n t e r n a l  loads i n t o  the members. These loads a r e  ca lcu la ted  and 
analyzed i n  t h e  f o l l o w i n g  sections. 

3.3.1 Longeron St ra in  and Moment 

The longeron cons is ts  o f  a continuous member having a hinge f i t t i n g  on 
each end o f  a graphi te/epoxy tube of approximately one-meter length.  A t  some 
degree o f  p a r t i a l  deployment, the  r e l a t i v e  o r i e n t a t i o n s  o f  the hinge axes on 
the two ends o f  the longeron are compared w i t h  t h e i r  i n i t i a l  unst ra ined s tate,  
and any angular d i f fe rence,  which by symnetry i s  i d e n t i c a l  on t h e  two ends, i s  
resolved i n t o  the  t w i s t i n g  and bending angles, et, and @baa See Figure 8. 

Twis t ing  each end through the angle @ta causes s t r a i n  

(Reference 2 ,  page 287) 
Q/2 

where rg i s  the longeron cross sect ion outer  radius. The generated t o r -  
s ional  moment i s  

(Reference 2, page 287) 

Bending a t  each end, al though not bo th  i n  the same a x i a l  d i r e c t i o n ,  can be 
Bending each end through the  angle Ob, produces a bow radius modeled as such. 

o f  Rg  i n  the  longeron given by 
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Figure 8. Longeron twisting and bending strain. 
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S t r a i n  and moment a re  then 

Longeron s t r a i n  and moment, f o r  t he  p o i n t  design, a re  p l o t t e d  as a func- 
t i o n  o f  longeron angle i n  Figure 9. 

3.3.2 Diagonal S t r a i n  and Moment 

The diagonal i s  a non-continuous member, having a midspan hinge, two seg- 
ments o f  graphite/epoxy tube, and a hinge f i t t i n g  on each end, f o r  an approxi-  
mate t o t a l  l eng th  o f  1.6 meters. Figure 10 shows how the diagonal i s  analyzed 
du r ing  deployment. I n  (a), a s ing le  bay i s  shown f u l l y  packaged, w i t h  on ly  
one longeron and one complete diagonal v i s i b l e  f o r  c l a r i t y .  The p a r t i a l  
deployment angle e, i s  chosen, i n d i c a t i n g  the  angle o f  the longeron away from 
v e r t i c a l  (beam ax i s ) ,  and i n  (b) the s i n g l e  bay i s  deployed t o  t h a t  cond i t ion ,  
except the fo lded  diagonal remains i n  i t s  o r i g i n a l  pos i t i on .  The chord dAB i s  
determined, which i s  the requ i red  diagonal end-end length. I n  (c)  the diago- 
na l  i s  unfolded about i t s  midspan hinge, d u p l i c a t i n g  the  chord length  dAB. I n  

(d) t he  two segments o f  the diagonal a re  ro ta ted  as a r i g i d  body (no r o t a t i o n  
about midspan hinge) about the base hinge a t  Al  so t h a t  the o ther  end 
approaches corner body B1. I n  (e) bo th  ends o f  the  diagonal a re  f reed  i n  
r o t a t i o n ,  b u t  connected a t  corner bodies Al and B1, and the diagonal i s  
r o t a t e d  about a x i s  AIB, t o  ob ta in  minimum angular mismatch. This o r i e n t a t i o n  
i s  then f i x e d  r e l a t i v e  t o  the p a r t i a l l y  deployed bay, and i n  ( f)  the  bay i s  
o r i e n t e d  so t h a t  the base segment o f  the  diagonal i s  along the x-axis and the 

hinge i n  corner body AI i s  i n  the x-y plane. I n  (9) the region a t  corner body 

Al i s  expanded, so t h a t  the  required angles o f  t w i s t i n g  e t d  and bending 
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-1 
Figure 9. Longeron bending and twisting strains and moments. 
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4bd a r e  c l a r i f i e d .  Steps ( f )  and (9) a re  repeated f o r  o b t a i n i n g  s t r a i n s  i n  
the  o ther  segment o f  the diagonal. Diagonal s t r a i n s  and moments a re  then 
obtained as fo l lows:  

Twis t ing  o f  the  end through the  angle a t d  causes s t r a i n  

- - Otd rd E 

td dn 

where r d  i s  the  diagonal cross section ou ter  rad ius and dn i s  the diagonal 
segment length  (end t o  midspan hinge). The generated t o r s i o n a l  moment i s  

I n  determining the  e f f e c t  o f  bending a t  the end, i t  i s  assumed tha t ,  a t  
the midspan hinge, the member i s  pinned. Then, the generated bending moment 
a t  the end i s  

The bending rad ius i s  

so t h a t  the  s t r a i n  i s  

Diagonals 1 and 2 s t r a i n  and moment, f o r  the p o i n t  design, a r e  p l o t t e d  as 
a func t ion  o f  longeron angle i n  Figures 11 and 12. 
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Figure 1 1. Diagonal 1 bending and twisting strains and moments. 
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Figure 12. Diagonal 2 bending and twisting strains and moments. 
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3.3.3 Deployment Forces and Energy 

Since work i s  requ i red  t o  t w i s t  and bend members, f o r c e  must be a p p l i e d  
over a d is tance t o  deploy o r  r e t r a c t  t h e  beam. The change i n  f l e x u r a l  energy 
i n  any member i n  t w i s t i n g  o r  bending i s  

AE = MA@ 

where M i s  the  instantaneous generated moment and A@ i s  the  angle, i n  radians, 

through which 
ber  energies. 
end per  bay, 

t h e  moment appl ies.  Beam energy changes as the sum o f  the  mem- 
Since there  a r e  s i x  longeron ends and th ree  o f  each diagonal 

Then, as the bay deploys, the t o t a l  f l e x u r a l  energy o f  the bay i s  

Ebay = P AEbay 

Deployment forces are  determined assuming t h a t  the beam energy i s  the  
product  o f  the f o r c e  exerted along a c e r t a i n  d i r e c t i o n  and the d is tance moved 
i n  t h a t  d i r e c t i o n .  Ax ia l  deployment fo rce  i s  

where z i s  the  instantaneous height o f  the moving llBlt bat ten  frame. Radial 
deployment f o r c e  (exerted on diagonal mldhinges) i s  

AEbay F, = 
I As 

where s i s  the instantaneous diagonal midhinge displacement. 
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Figure  13 shows single-bay energy and forces. P o s i t i v e  fo rces  r e t a r d  
deployment; negat ive fo rces  push toward f u l l  deployment o r ,  conversely, 
r e t a r d  re t rac t i on .  S t a r t i n g  f r o m  t h e  f u l l y  packaged s t a t e  on the  l e f t  s ide of 
the  graph, a x i a l  deployment load increases because o f  longeron bending s t r a i n  
(F igure 9). The longerons then s t ra igh ten  out ,  so t h a t  deployment load 
decreases and a c t u a l l y  pushes toward f u l l  deployment. Longeron bending then 
increases, b u t  i n  the  opposi te  d i rec t i on ,  w h i l e  concur ren t ly  diagonal bending 
i s  becoming s i g n i f i c a n t ,  and deployment load approaches 100 N (22 l b f ) .  
During the  f i n a l  stage o f  deployment, s t r u t  members s t r a i g h t e n  ou t  as bay 
he igh t  approaches the  f u l l y  deployed bay length,  and a x i a l  deployment fo rce  
becomes h i g h l y  negative. Although member t w i s t i n g  s t r a i n  i s  s i g n i f i c a n t ,  the  
t o r s i o n a l  s t i f f n e s s  o f  the  un id i rec t i ona l  graphite/epoxy tubes i s  so low t h a t  
member torque does no t  g r e a t l y  a f f e c t  deployment load. 

A t  f u l l  deployment ( r i g h t  s ide o f  graph, F igure  13), the  changing s t r a i n  
energy o f  the  s i n g l e  bay can be expressed as t h e  work done i n  r e t r a c t i n g  the  
bay by pushing on the  diagonal midspan hinges. Th is  fo rce  reaches a peak o f  
about 140 N (31 l b f ) .  A t  a longeron angle o f  about 15 degrees from the  a x i a l  
d i r e c t i o n  dur ing  r e t r a c t i o n ,  the ax ia l  deployment f o r c e  becomes manageable so 
t h a t  fo rces  pushing on diagonal midspan hinges can be replaced by forces push- 
i n g  a x i a l l y  downward (toward re t rac t ion) .  

3.4 HINGE DESIGN AND TEST STUDIES 

As ind i ca ted  i n  Sect ion 3.1.1.1, hinge compliance i s  a very important fac-  
t o r  i n  beam design. The j o i n t  s t i f f n e s s  "knockdown" f a c t o r  can be s i g n i f i c a n t  
i n  designs where the  longeron s t r u t  i s  a x i a l l y  very  s t i f f .  I n  the present 
design the  longeron s t i f f n e s s  EAQ i s  about 17 x l o 6  N (3.8 x 10 l b f ) ,  so t h a t  
over i t s  1.12-meter (44-inch) length, i t  has a compliance of 66 nm/n (11.5 
p i n / l b f ) .  A knockdown f a c t o r  o f  two- th i rds imp l i es  a compliance increase o f  
50 percent, o r  33 nm/N (5.8 p in / l b f )  f o r  the  sum o f  t he  two longeron end 
f i t t i n g s .  As shown i n  the  fo l l ow ing  sections, t h i s  compliance is e a s i l y  
achievable. 

6 
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Figure 13. Forces and energy. 
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3.4.1 HInge Design 

Hinges i n  most cases of the  present design are  designed t o  be simple 
c lev ises,  so t h a t  the ends o f  the  longerons and diagonals c o n s i s t  o f  a s i n g l e  
tang w i t h  a hole, f i t t i n g  i n t o  s lo ts  i n  the corner bodies which a l s o  have 
holes. Hole d i r e c t i o n s  are  as given i n  Table 1, and s l o t s  are perpendicular 
t o  holes. Diagonal midspan hinges a r e  a specia l  case, and a r e  discussed i n  
Sect ion 3.4.3. 

3.4.2 Test - 
Two ef fects  which a r e  observable i n  hinge t e s t s  a r e  o f  s i g n i f i c a n t  impor- 

tance i n  deployable trusses: compliance and t u r n i n g  moment. As discussed i n  
Sect ion 3.1, hinge f i t t i n g  compliance, measured as f i t t i n g  d e f l e c t i o n  per  u n i t  
of force a p p l i e d  i n  the  d i r e c t j o n  o f  a member center l ine ,  determines along 
w i t h  s t r u t  a x i a l  s t i f f n e s s  the a x i a l  and bending s t i f f n e s s e s  o f  the beam. The 
moment requ i red  t o  t u r n  a s t r u t  about i t s  hinge a x i s  a f f e c t s  the d e p l o y a b i l i t y  
o f  the  beam. Beams o f  l a r g e  cross sect ion,  having long s t r u t s ,  can t o l e r a t e  
g rea ter  hinge t u r n i n g  moment than can smal ler  beams. The deployment load, 
discussed i n  Sect ion 3.3, I s  af fec ted  by this moment, as work i s  requl red i n  
r o t a t i n g  these hinges. Compliance is separable i n t o  the three areas o f  e las-  
t i c  deformation, hysteres is ,  and deadband. Turning moment i s  a f u n c t i o n  of 
p in - to -ho le  clearance and f r i c t i o n  c o e f f i c i e n t .  

Tests were conducted on a number o f  con f igura t ions  us ing the  apparatus 
shown i n  F igure  14 t o  determine the shape o f  the fo rce  d e f l e c t i o n  curve, and 
i n  so do ing f ind  design approaches which maximize j o i n t  s t i f f n e s s  w h i l e  m i n i -  
m iz ing  hys teres is  and deadband. 

F igure 15 shows the  performance progression dur ing  a ser ies  o f  hinge com- 
p l i a n c e  t e s t s ,  showing the  necessi ty f o r  very c lose p r e c i s i o n  f i t s  between p i n  
and ho le  as w e l l  as tang width and s l o t  width, and f o r  hard, l o w - f r i c t i o n  
coatings. A t y p i c a l  compllance t e s t  (Figure 15a) d isp lays  a l l  th ree  compli- 
ance c h a r a c t e r i s t i c s :  deadband as an abrupt change i n  slope near zero load as 
the  p a r t  clearances a d j u s t  f o r  load d i r e c t i o n ;  hys teres is  as a broadening o f  
the  curve due t o  load t r a n s f e r  e f f e c t s  across p in - lug  boundaries; and e l a s t i c  

deformat ion of the mater ia l  i t s e l f ,  seen as a constant s lope i n  regions away 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

c 
(I) 
a, 
c 
a, 
0 
C m .- - 
2 
0 

38 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 0 

0 

0 
- 0  

N 

0 
- 0  

I -I N 
0 0 

c 
0 o s  

0 
c - 
p 

0 0 "  
- 

7 

0 0 

N 
0 0 

0 
0 0 

P 
0 0 

0 
0 0 

N 0 0 

r 
0 
O E  

c 

- - 
0 0 '  

- 
0 0 

N 
0 0 

n 
0 0 

0 1  

O O  - O O  N ? '9 7 -  
0 0 0 0 0 0 0 0 

0 N 
0 0 0 

0 (D 
0 0 0 

0 0 m 

uorssaduo3 uolsual 

9 
B 
J 

33 

3 
0 - 
-0 
C 
(d 
v) 
c 
c .- 

- m 
C 

0 z 
cd; 

'E 



I 
i 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

from zero load. Ea r l y  e f f o r t s  were d i r e c t e d  toward min imiza t ion  o f  deadband 
by us ing very c lose  f i t s ,  and i n  Figure 15b, the deadband i s  n e a r l y  e l im ina ted  
(measured d iametra l  clearance: 0.00015 inch, each of two p ins) .  Th is  p a r t  
re fused t o  tu rn ,  i n  s p i t e  o f  t he  measured clearance. I n  F igure  15c, coated 
p i n s  were used (Nedox CR+), with s i m i l a r  clearance as before, and compliance 

was s a t i s f a c t o r i l y  low, as was the tu rn ing  moment. Throughout the  t e s t  
ser ies ,  success ive ly  increas ing p in  diameters were used ( f rom 0.315 inch  a t  
s t a r t  t o  0.378 inch  a t  end o f  series), w i t h  no no t iceab le  decrease i n  compli- 
ance due t o  t h i s  e f fec t .  I t  was concluded t h a t  hard, l o w - f r i c t i o n  coat ings 
are  necessary, w i t h  very c lose f i t s ,  y i e l d i n g  hinge compliances of l ess  than 
5.7 nm/N (1.0 y i n / l b f )  and hinge t u r n i n g  moments o f  l e s s  than 0.56 Nm ( 5  
in-1 b f )  . 
3.4.3 Diagonal Midspan Hinges 

Pre loading hinges are  used as diagonal midspan hinges. Th is  concept has 
been used i n  several deployable s t ruc tu res  (References 3 ,  4, 5 and 6), r e s u l t -  
i n g  i n  the  development o f  a h igh ly  e f f i c i e n t  hinge. General requirements 
inc lude:  

High pre load i n  deployed cond i t ion  i n  terms o f  bend 
press ive  load across contact  face. 

R e l a t i v e l y  h igh  bending moment tending toward f u l l  
angle approaches zero. 

Low compliance 

ng moment and com- 

deployment as f o l d  

The geometric p roper t i es  o f  the hinge, which cons is ts  o f  an assembly o f  
two main bodies and two l i n k s ,  amplify the  moment app l i ed  by a t o r s i o n  spr ing  
several t imes t o  generate the  deployed preload. I n  F igure 16a, t he  spr ing  i s  
i n  the  long l i n k ,  where i t  attaches t o  the  body. High moment a m p l i f i c a t i o n  
r e s u l t s  because the  l i n k s  approach p a r a l l e l i s m  i n  the  deployed condi t ion.  
Note t h a t  the  p i c t o r i a l  perspect ive d isguises the  f a c t  t h a t  t he  f u l l y  packaged 
hinge f o l d s  t o  an inc luded angle of about 14 degrees, as shown i n  F igure 5. 
The l i nkage  schematic (F igure 16b) i nd i ca tes  how moment a m p l i f i c a t i o n  i s  
r e l a t e d  t o  hinge geometry. A t  f u l l  deployment, moment a m p l i f i c a t i o n  i s  q u i t e  
h igh  i f  the  l i n k - l i n k  angle u i s  low,  and i f  the  l i n k  s tand-o f f  d is tance abd 
i s  large. 
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Deployed Partially Stowed 
deployed 

a. Truss beam model hinge. 

/ 
b. Schematic 

Figure 16. Diagonal hinge. 
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SECTION 4 
TRUSS BEAM DESIGN, FABRICATION AND ASSEMBLY 

4.1 MATERIALS 

Mate r ia l s  used i n  the  var ious components o f  t h i s  assembly inc lude:  

Longerons: Graphite/epoxy tube, u n i d i r e c t i o n a l  a x i a l  f i l aments ,  mate- 
r i a l  type Celanese 650. Glass scr im used mid-wall  t o  increase circum- 
f e r e n t i a l  strength. Outer diameter measured 0.02012 meter (0.792 
inch) ,  w a l l  measured 0.00257 meter (0.101 inch). 

Diagonals: Graphite/epoxy tube, u n i d i r e c t i o n a l  a x i a l  f i l aments ,  mate- 
r i a l  type Celanese G50. Glass scr im used mid-wall  t o  increase circum- 
f e r e n t i a l  strength. Outer diameter measured 0.01504 meter (0.592 
inch) ,  w a l l  measured 0.00191 meter (0.075 inch). 

Battens: Graphite/epoxy tube, u n i d i r e c t i o n a l  a x i a l  f i l aments ,  mate- 
r i a l  type Celanese G50. Glass scr im used mid-wall  t o  increase circum- 
f e r e n t i a l  strength. Outer diameter measured 0.01496 meter (0.589 
inch) ,  w a l l  measured 0.00146 meter (0.058 inch). 

H in  e f i t t i n  s: A l l  f i t t i n g s  and corner bodies were machined t i t a n i u m  
-4". Surfaces were coated, i n c l u d i n g  c l e v i s  sides and 
holes and exc lud ing bonding surfaces, us ing T iod ize  2X, which i s  a pro- 
p r i e t a r y  t i t a n i u m  sur face coating. Coating th ickness was 20 t o  50 
microinches. 

Hinge pins: 303 s t a i n l e s s  s tee l ,  d r i l l e d  and tapped f o r  r e t r i e v a l .  
P i n  surfaces were coated using T io lube 1175, a p r o p r i e t a r y  t i t a n i u m  
surface coating. I t  i s  essen t ia l l y  a molybdenum d i s u l f i d e  formulat ion,  
0.001 t o  0.002 inch  th ick .  

4.2 FIXTURES 

F i x t u r i n g  was designed and fabr ica ted  f o r  bonding components together ,  
which consis ted of bonding hinge f i t t i n g s  t o  graphite/epoxy tubes. Hinge p i n  
spacing and o r i e n t a t i o n  were o f  equal importance, and were h e l d  c lose  t o  t o l -  
erance by the  use o f  t o o l i n g  b a l l s  and accurate ramp angles and d is tance 
measurements, and by the  use o f  the same f i x t u r e  f o r  many bonding operations. 

Since a l l  ba t ten  frames a re  t r i a n g u l a r  w i t h  a 0.7-meter rad ius,  t he  same 
f i x t u r e  was used f o r  bonding o f  a l l  I1Ali and llBll ba t ten  frames, as shown i n  
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Figure  17. For placement o f  each corner body, a simulated longeron f i t t i n g  
was i n s e r t e d  i n  an accura te ly  located hole, and each was clamped i n  the proper 
o r i e n t a t i o n .  

Longerons are  o f  two types, which a r e  i d e n t i c a l  i n  l eng th  b u t  a re  m i r r o r  
images o f  each other. Hence, the  same f i x t u r e  was used f o r  a l l ,  and l e f t -  and 
r ight-handed f i t t i n g  o r i e n t a t i o n s  were accomplished by the  use of i n v e r t i b l e  

ramps. Figure 18 shows the  method f o r  longeron bonding. 

Diagonals cons is t  o f  midspan hinges, graphite/epoxy tubes, and end 

f i t t i n g s .  Bonding o f  diagonals was done i n  two steps: f i r s t  the  
graphite/epoxy tubes were bonded t o  the  midspan hinge i n  the  deployed 
con f igu ra t i on ,  and then the  end f i t t i n g s  were bonded i n  place. The f i r s t  step 
was done independently t o  ensure c o l i n e a r i t y  o f  deployed diagonal segments. 
Since, as w i t h  the  longerons, there a re  two types o f  diagonals, i d e n t i c a l  i n  
l eng th  b u t  m i r r o r  images of each other, the same f i x t u r e  was used f o r  a l l  
diagonals, using i n v e r t i b l e  ramps for  opposites. F igure  19 shows the  method 
f o r  bonding midspan hinges; the  bonding method f o r  the diagonal end f i t t i n g  i s  
t he  same as shown f o r  t he  longerons i n  F igure  18. 

4. 3 BONDING PROCEDURES 

Procedures used f o r  bonding the t r u s s  beam piece p a r t s  together were s i m i -  
l a r  t o  those developed f o r  the  Seasat radar antenna deployable beam fab r i ca ted  
a t  As t ro  Aerospace Corporat ion from t i t a n i u m  and graphite/epoxy. Ti tanium was 
p re t rea ted  using Passajel 107. Graphite/epoxy tube ends were p re t rea ted  by 
abrasion using 120 g r i t  sandpaper, fo l lowed by imnersion i n  Si lane. Epoxy 
adhesive 934 NA was used, w i t h  a two-hour cure a t  4OOC. 

4.4 TESTS 

4.4.1 Tube Acceptance Tests 

Acceptance t e s t s  o f  the graphite/epoxy tubes were performed t o  conf i rm 
t h a t  they were o f  requ i red  s t i f f ness .  Two types o f  t e s t  were conducted: 
t h ree -po in t  bending and f ree- f ree  v ib ra t i on .  I n  the  f i r s t ,  t he  tube i s  
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supported h o r i z o n t a l l y  a t  two po in ts  separated by d is tance a ,  and load P i s  
app l i ed  v e r t i c a l l y  t o  the  tube a t  the  midpoint  between t h e  supports. The 

d e f l e c t i o n  y i s  

Pa' y = - -  48EI (Reference 2, Table 3, case l e )  

The a rea l  moment I i s  obtained from the  tube cross sec t i on  (Sect ion 3.1.1.2), 
so t h a t  t he  tube modulus E i s  determined from the  slope P/y o f  the  load- 
d e f l  e c t i  on curve. 

The second method o f  determining tube modulus, by f ree - f ree  v i b r a t i o n ,  
cons is ts  o f  suppor t ing t h e  tube v e r t i c a l l y  (hand-held i s  s a t i s f a c t o r y )  a t  a 
d is tance o f  0.224 t imes i t s  t o t a l  length from i t s  upper end, which i s  a nodal 
p o i n t  f o r  t h i s  v ib ra t i on .  The tube is s t ruck  a t  i t s  center  and the  r e s u l t i n g  
tone i d e n t i f i e d  by comparison t o  standard tones. The frequency i s  

(Reference 2, Table 36, case 4) 

The l i n e a l  mass m'  i s  measured d i r e c t l y  on an accurate balance; a rea l  moment I 
i s  obta ined as prev lous ly .  Then the tube modulus i s  determined from the meas- 
ured frequency as l i s t e d  i n  a standard tone-frequency chart.  Support ing the  
tube a t  nodal p o i n t s  corresponding t o  h igher  harmonics and us ing the  appropr i -  
a t e  constant  (Reference 2, Table 36, case 4) y i e l d s  co r robo ra t i ve  data. 

The two methods y i e l d e d  modulus r e s u l t s  t y p i c a l l y  w i t h i n  f i v e  percent of 
each other ,  w i t h  the  acous t ic  r e s u l t  genera l l y  being higher. 

4.4.2 Member Proof  Tests 

Proof  t e s t s  were conducted on members f o r  two reasons. F i r s t ,  e a r l y  i n  
the  development pe r iod  t o  a i d  i n  the design o f  end f i t t i n g s ,  bending and 
t w i s t i n g  moments were app l ied  a t  the bond area between the  tube and f i t t i n g  a t  

t h e  p r e d i c t e d  deployment load leve l ,  and a f t e r  a se r ies  o f  t e s t s  a f i t t i n g  
design was developed i n  which tube loadings a re  t r a n s f e r r e d  i n t o  the  f i t t i n g  
through an i n t e r n a l  stub and an external sleeve. The second stage o f  member 
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proof t e s t s  served t o  q u a l i f y  the  graphite/epoxy tube i n  each member f o r  bend- 
i n g  and t w i s t i n g  a t  the  deployment load leve l .  F igure 20 shows these t e s t s  as 

they were conducted. Twis t ing s t r a i n  was developed over the  e n t i r e  tube 
length;  bending s t r a i n  was maximum a t  the support po in t .  These p r o o f  t e s t s  
were conducted i n  a q u i e t  environment, and any aud ib le  crack ing noises were 
grounds f o r  r e j e c t i o n  of a par t .  Other inspec t ion  techniques could have been 

used here (x-ray, acoust ic  emission, etc.), b u t  t h i s  procedure was se lected t o  
keep inspec t ion  costs low. 

4.5 ASSEMBLY 

Beam subassemblies a r e  shown i n  F igure 21 and consis ted o f  longerons and 

diagonals, both i n  l e f t -  and righthanded versions, and A- and B-type ba t ten  
f fames . 

Beam assembly consisted o f  p i n  inser t ion .  Pins were cooled by imnersion 
i n  l i q u i d  n i t rogen,  so t h a t  a diametral clearance o f  about 0.0003 inch  was 
achieved dur ing  p i n  inser t ion .  A t  temperature equ i l ib r ium,  the p in-hole 
clearance i s  nominal ly  zero. Care was taken t o  assemble components proper ly ,  
as p i n  removal i s  d i f f i c u l t  (bu t  possible). F igure 22 shows the assembled 
beam i n  the  packaged state. F igure 23 shows p a r t i a l  deployment. I n  F igure 24 

the  beam i s  f u l l y  deployed. 
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b) Diagonal 

t 

a) Longeron 

Figure 20. Member proof tests. 
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Figure 21. Preassernbled beam parts. 
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Figure 24. Full deployment of assembled beam. 
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SECTION 5 
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 SUMMARY 

The t r u s s  beam i s  a robust, e f f i c i e n t  s t r u c t u r e  which has been designed t o  
meet the requirements o f  the t russ  beam model w i t h  subs tan t ia l  margins and 
safety factors .  High modulus graphite/epoxy tubes a r e  used f o r  a l l  l i n e a l  
s t r u t  members, and p r e c i s i o n  t i tan ium p a r t s  a r e  used i n  the  hinge hardware. 
The bending s t rength  o f  4,000 Nm includes a s a f e t y  f a c t o r  o f  1.4 and meets the 
spec i f ied  loading requirement w i t h  a p o s i t i v e  margin. The bending s t i f f n e s s  
of the  beam assembly, inc lud ing  j o i n t  compliances, i s  1.15 x lo7 Nm2 w i t h  a 
t e n  percent  margin over the  requirements. The lowest t o r s i o n a l  v i b r a t i o n  f r e -  
quency i s  4.5 t imes the  lowest bending frequency. The c o e f f i c i e n t  o f  thermal 
expansion w i l l  vary  w i th  temperature, f i b e r  batch, and environmental h i s t o r y ,  
b u t  should s tay  below an absolute value o f  0.5 x 10-6/K. The t o t a l  mass o f  
the  20.3-meter-long beam i s  near 95 kilograms, i n c l u d i n g  end f i t t i n g s  and fea- 
tu res  t o  enhance res is tance t o  ground handling. The r e s u l t  i s  a s t r u c t u r e  
t h a t  i s  t y p i c a l  o f  high-qual i ty spacefl i g h t  hardware. 

The beam meets a l l  o f  the  secondary beam requirements i n c l u d i n g  prov is ions  
f o r  a w i r e  harness, t e s t  components and e l e c t r i c a l  c o n d u c t i v i t y  along the sur- 
faces and length. The beam i s  eas i l y  repa i rab le  w i th  hand t o o l s ,  and each 
type o f  subassembly i s  interchangeable. Prov is ions have been inc luded i n  the  
design f o r  very s t i f f  attachments t o  an end mass and t o  a base f i x t u r e .  

5 . 2 CONCLUSIONS 

The t r u s s  beam as fabr ica ted  should e x h i b i t  the proper t ies  as s e t  f o r t h  i n  
Sect ion 2.2. Deployment by single-degree-of-freedom hinges i s  poss ib le ,  where 
i n  most cases the  hinge angles a r e  reasonable i n  terms o f  machining. Mater ia l  
s t r a i n  and r e s u l t i n g  moments dur ing  deployment a r e  not  excessive, b u t  may be a 
problem i f  s t i f f e r  members are  used, s ince deployment loads and f i t t i n g  mass 
requirements increase, o r  i f  mater ia ls  o f  lower s t r a i n  l i m i t  a r e  used, s ince 
safety margins would decrease. 
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The c o n f i g u r a t i o n  and design of t h i s  beam have been guided by  t h e  des i ra -  

b i l i t y  o f  p r e d i c t a b l e  l i n e a r  behavior. I t  i s  an e x c e l l e n t  choice f o r  a ground 
t e s t  a r t i c l e  t h a t  i s  r e p r e s e n t a t i v e  o f  f u t u r e  s t r u c t u r e s  t h a t  w i l l  be used i n  
space. 
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